You are currently browsing the monthly archive for March 2013.

My friend Jay Lake has been engaged in a battle royale with colon cancer for the past 5 years. Read all the details via his Live Journal entries — he has been remarkably candid, lucid, and informative about his disease, treatments, side effects, and mental processes for this entire time. But now that new metastases are showing up even while he is on chemo, he is exploring cutting edge science by having his tumor’s genome sequenced. The money for this was raided via a Kickstarter-type campaign that funded the first $20,000 basic need within 5 hours.  part of the deal with the4 fundraiser was “Acts of Whimsy”, fun quick things that were done by friends when certain financial goals of the fundraiser were met, like  the video of Mary Robinette Kowal reading classics out loud in her best phone sex voice, or John Scalzi singing a lost Bob Dylan song.

I had offered to weave something inspired by the genome data, but that didn’t quite fit into the “Acts of Whimsy” framework.  However, Jay was quite taken with the idea, and so the project is moving ahead.  I’ll be documenting the design and weaving process as it goes along.

I’ve long thought that the pictures one sees of gene sequences look like warp or weft stripes. And Jay’s genome sequence gives me the perfect opportunity to try this out.  The plan is to make several scarves, which right off the bat makes a major decision about what sort of textile it will be be: wearable.  Not just wearable, but sturdy enough to wash, comfortable and soft enough to wear next to the skin; with drape and a certain luscious quality.  Ideally, I’d use silk, but it’s just too darned expensive.  Bamboo is a lovely fiber with silk-like drape and shine, but I avoid using it when I can, because the manufacturing process generates a lot of toxic waste.  Tencel, though, is just the thing. Similar to rayon, it also drapy, shiny and delightful to touch, and the manufacturing process is a closed loop, reusing the chemicals needed to break down the cellulose fibers from the trees that they start out as.

Human gene sequences are  composed of the four DNA base molecules:  adenine (A), thymine (T), cytosine (C), and guanine (G). . I found a source giving a standard color coding of G – black, C – blue, T – red, and A – green, so bought some Tencel in those colors. With that idea, that one base equal a particular color, you can see that gene sequences can turn into stripes quite easily.  A sequence reading acaagatgcc would gives stripes as follows: green, blue, green, green, black, green, red, black, blue, blue.

With Jay, like the rest of us, having 24 chromosomes, each of them with 51 million to 245 million base pairs, there are obviously far too many base molecules to use, so only a small portion of his genome will be used for the scarf.  We haven’t decided exactly what yet, but it will be tumor rather than the normal Jay part.  Chromosome 12 has been implicated, but the data hasn’t all been crunched and interpreted yet.

Also, I still haven’t decided whether it will be warp stripes or weft stripes.  Warp stripes have the advantage of being faster to weave once they are set up, and lengthwise stripes on a scarf are always a nice look.  Weft stripes would allow for a longer sequence to be represented but would require more attention being  paid during the weaving process.

With those idea simmering in the brain, it was time to do a sample.


Here are the cones of Tencel.  I also got some white, but we all know what white looks like , don’t we?

Jay's genome 05

Here’s the first sample.  And this is why we sample, people, because it is quite a dog’s breakfast. Let’s look at the awful details.

Jay's genome 07

First, the warp. I could say that I started the warp in white because I was thinking about weft stripes, but I wasn’t.  Halfway through, I realized I had meant to do warp stripes and started using colors.  Oh well. Going up from he bottom, I started weaving in white, then red.  You can see that  it’s wavy, drawn-in and rather wretched.  Tension issues with my tiny sample and also I was beating way too  hard.    The weave structure is a straight-draw  8 shaft satin, which you sure can’t see in the white and red sections.  The selvages are hopeless, so at about the beginning of the blue weft, I added floating selvages and started placing the weft gently rather than beating it, and you can see that the weaving is both wider and more relaxed looking.  The structure looks more like a twill and less like plain weave.

Jay's genome 08

Further into the blue section,  the beat is getting gentler yet — you can see the floats of white on the left getting longer as you move up the weaving, and with the black weft at the top it’s looking more satin-like.
Jay's genome 09

The problem with weaving a structure with long horizontal floats is that it’s easier to weave it upside down, so in this case,  instead of lifting 7 harnesses at a time, you are lifting only 1.  The downside is that you are looking at the back of the fabric as you weave, so if you make a treadling error you don’t  see it until you turn the fabric over, and voila! — look at those long vertical  floats toward the bottom of this picture.  Error!

Jay's genome 10

Here is the back of the sample.  You can see the long floats of weft that pretty much completely hide the warp.

When the sample was taken off the loom, it was stiff and boardy. A bath made it soft, supple, and ever so much nicer to touch.  I have severe doubts about using this weave structure for this project, but I’m glad I tried it out.  Next up, 5 shaft satin and plain weave.